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The elastic models of radial core-shell nanowires with diffuse interphase boundaries are
suggested. The concept of eigenstrain is employed to consider a misfit stress distribution
induced by diffusive interfaces with different range of distinctness. The eigenstrain profile
described by the misfit parameter is approximated by piecewise-linear, error and arctan-
gent functions. For these approximations the elastic stresses in core-shell nanowires are

analytically derived, illustrated with plots and discussed in detail.
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1. INTRODUCTION

In recent years core-shell nanowires (NWs) with diffuse
interphase boundaries (IPhBs) have attracted an increas-
ing attention of experimenters, technologists [1-4] and
theorists [2,4-8]. As the sharp IPhBs with atomically dis-
tinct interface are hardly synthesized in practice due to res-
ervoir effect in the catalyst droplet [9], the diffuse IPhBs
seems to be more perspective for investigation. For both
types of IPhBs the elastic stress and strain caused by the
lattice mismatch at the interface between various core and
shell materials affect functional properties of the NWs and
can lead to the generation of crystal structural defects [10].

The interface indistinctness attributed to the diffuse
IPhBs and driven by the mutual diffusion penetration of
core and shell atoms, deteriorates the electron and optical
properties of these heterostructures [2,5]. Nevertheless,
this phenomenon inhibits (prevents) the formation of the
misfit defects due to reduction of the strain energy of the
lattice mismatch [6,7]. Therefore, the strict theoretical
models describing the coherent stress-strain state in NWs
with IPhBs are deemed to be essential to investigate the
physical foundations of misfit stress relaxation due to the

nucleation and evolution of defects in modern electronic
and optoelectronic devices.

To date, the theoretical models describing the stress-
strain state in axial NWs with a diffuse interface have been
developed [6-8], while an elastic model of radial NWs
have not been suggested yet. Besides, the available theo-
retical model of misfit stress relaxation in core-shell het-
erostructures [11-26] employs the analytical expressions
of the elastic stress induced by eigenstrain defined by
Heaviside theta function.

This work aims at providing the theoretical model de-
scribing the misfit stress of core-shell NWs containing the
diffuse IPhBs with different range of distinctness. The
piecewise-linear, error and arctangent function approxi-
mations of eigenstrain profile are considered to obtain an-
alytically components of elastic stress of radial core-shell
NWs.

2. MODEL
We consider a cylindrical core-shell NW of radius b con-

taining the diffuse IPhB of radius @ consisting of materials
with the same elastic constants (shear modulus p and
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Fig. 1. Sketch of cross section of a radial core-shell NW with
outer radius b and core radius a.

Poisson ratio v), but with the different core and shell lattice
constants a, and a, respectively (see Fig. 1). In this NW
the lattice mismatch between core and shell materials in-
duces an elastic strain and stress which could be elucidated
in terms of eigenstrain deformation &', Generally, the
parameter & as a function of the radial coordinate is re-
sponsible for the interface distinctness, i.e., diffusion pen-
etration of core atoms into the shell domain, and vice
versa.

According to the concept of eigenstrain, the total strain
of an elastic cylinder subjected to the residual strain can
be decomposed as:

e, =& +e", (1)
where g‘e” are the components of elastic stress tensor,

e = f 8 is the dilatational misfit of NW, £ = f(r) is a
mlsﬁt proﬁle determining disturbance of the eigenstrain
inside the NW and 5, is Kronecker delta (5, =1 for i =/,
3, =0 fori=)).

Taking into consideration the axial-symmetry of the
problem the non-zero components of the total strain tensor
in cylindrical coordinate system can be expressed through
the displacement with following relations:
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where u = u, () is radial displacement of NW. It is worth
noting that axial strain e_ does not depend on either  or z,
i.e., the Eq. (2¢) can be rewritten as e_ = const.

The non-zero components of elastic stress tensor o,
can be obtained by the Hooke law:
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where e=¢ +e¢,, +e_. Besides, the stress tensor compo-

nents have to satisfy the first equilibrium equation:
acrr + Grr _ 699 — O (4)
or r
Finally, introduce Egs. (3) in Eq. (4) with respect to
Egs. (2) and Oe_ /0r =0 one can obtain the differential
equation for displacement:

du ldu u 1l+vd
s A )

-t 2
dr- rdr r 1-vdr

The solution of Eq. (5) is well-known and can be writ-
ten in the following form:

u:Ar+Bl+1+—Vl_[ f(p)pdp, (6)

where 4 and B are unknown coefficients. Taking into ac-
count the Egs. (2) and Eq. (6) the components of stress
tensor (3) can be rewritten:

0, =A-Bc- [ fp)pdp, (7a)

O = A+ B2 1+V{f( i f(p)pdp} (7b)

G, = 2vA+ 2u(l+v)e,, - 2},L1+—Vf(r). (7c)
-V

Here the following notations ar introduced:

.4
A=opitVe (8a)

B=2uB. (8b)

The unknown coefficients 4, B and axial strain e_ can
be obtained from the conditions

u(r = 0) = const, (9a)

c, (r=5b)=0, (9b)
b

2“.[0 o rdr=0. (9¢)

The Eq. (92) results in B = 0. Therefore, from Eq. (8b)
we get:

B=0. (10a)
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Now the coefficient A can be derived from the traction
boundary condition (9b) on the free cylindrical surface:

1+v 1

— [ £e)pdp.

v 10b
1-v b’ (10b)

A= 2u
The axial strain e.. can be expressed from the equilib-
rium equation (9c¢) in integral form as:

_l—vé

= . (10c)
I+vp

zz

For axial stress ¢_ one can obtain from the Eqs. (7)
with respect to Eq. (10c¢):

-1
Gzz =Grr +GSG =2A_2H1+_Vf(r) (11)
-V

In order to investigate the influence of core and shell
interface distinctness on the residual stress state of core-
shell NWs (see Egs. (7)) the different approximations are
considered below.

The Heaviside theta function representation of misfit
profile f is the simplest and the most effective approxima-
tion to describe the sharp interfaces, if the mutual penetra-
tion of core and shell atoms is negligibly small:

£ = 1,0, 1), (12)

where ¢ = r/ b is a normalized radius, ¢, = a/ b is interface
to NW ratio, f, is misfit parameter and © is a Heaviside
theta function.

In contrast to sharp interfaces, the diffuse interfaces
are distinguished by a significant mutual penetration of
core and shell atoms. The following approximations of ei-
genstrain profiles in core-shell NWs can be employed to
investigate the residual stress state of diffuse interfaces
(see Fig. 2):

Piecewise-linear function

1, 0<t<t,-8/2,
L@ =fo1@,-1t)/0+1/2, t,-8/2<t<t,+6/2, (13)
0, 1>1,+8/2,

Error function

Jg(z):lﬁ)(werf[’o_tD, (14)
2 a
Arctangent function
11 fy—t
f4(t)=f0(5+;arctan{TD, (15)

where 6 is the interface width normalized to the radius of
NW, o and B are parameters defining the distinctness of
interface.

—— Heaviside theta function — Piecewise-linear function
—— Error function Arctangent function
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Fig. 2. Dependencies of the normalized eigenstrain deformation
function f'/ f, on normalized radial coordinate ¢ = r / b in core-
shell NWs. Here black, blue, red and green curves correspond to
Heaviside theta, piecewise-linear (8 = 0.1), error (o= 0.1/ n?),
and arctangent (B =0.1/m) eigenstrain deformation functions
respectively.

Introducing the expressions for approximations under
consideration (12—15) in Egs. (7) with regard to Egs. (10)
and Eq. (11) one can obtain the analytical solution of the
elastic problem of core-shell NW subjected to inhomoge-
neous dilatational eigenstrain /(7). The analytical expres-
sions of the elastic stress are given in Appendix A.

3. RESULTS AND DISCUSSION

In further analysis of elastic stresses (A.2—A.4) in core-
shell NWs, the approximations describing the diffuse
(piecewise, error, arctangent functions) and sharp (Heavi-
side theta function) interfaces are presumed to have a com-
mon tangent line at the core-shell boundary (¢ =¢,) as it is
shown in Fig. 2.

The distributions of the radial stress o, in core-shell
NW for different eigenstrain approximations are depicted in
Fig. 3. The fulfillment of boundary condition (9b) at the
outer cylindrical surface (= 1) for all approximations is
demonstrated. As it is seen from Fig. 3 the curves of diffuse
IPhBs significantly differ from the curve of sharp IPhBs in
the vicinity of interface (¢ =¢,). Besides, the arctangent ap-
proximation for given parameters takes less absolute value
of radial stress in core region then it is predicted by other
approximations. This discrepancy can be explained by the
fact that the value of ratio f/ f, for arctangent function is
not close enough to other approximations at =0 and ¢=1
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Fig. 3. Dependencies of the normalized radial stress components
6, / 6,on normalized radial coordinate =r/b in core-shell
NWs. Here black, blue, red and green curves correspond to
Heaviside theta, piecewise-linear (8 = 0.1), error (a = 0.1/ '’?),
and arctangent (B =0.1/x) eigenstrain deformation functions
respectively.
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Fig. 4. Dependencies of the normalized hoop stress components
Gy / 0, on normalized radial coordinate t=r/b in core-shell
NWs. Here black, blue, red and green curves correspond to
Heaviside theta, piecewise-linear (8 = 0.1), error (o= 0.1/ n'’?),
and arctangent (B =0.1/x) eigenstrain deformation functions
respectively.

for prescribed parameter B = 6/m (see Fig. 2) and can be
eliminated if parameter  tends to 0.

The dependences of hoop stress G, on normalized ra-
dial coordinate ¢ for different eigenstrain approximations
in NW is illustrated in Fig. 4. What can be clearly seen in
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Fig. 5. Dependencies of the normalized axial stress components
c.. /o, on normalized radial coordinate =r/b in core-shell
NWs. Here black, blue, red and green curves correspond to
Heaviside theta, piecewise-linear (8 = 0.1), error (a = 0.1/ n'’?),
and arctangent (B =0.1/x) eigenstrain deformation functions
respectively.

Fig. 4 is that for all approximations the local maximum is
detected in the shell region. The peak stress decreases and
shifts toward outer interface if the interface distinctness
reduces.

The axial stress o__ in core-shell NW demonstrated in
Fig. 5. It is proportional to the eigenstrain function f'(¢)
according to the Eq. (11). Therefore, the stress in NW with
sharp interface is homogenous in core and shell, while the
ones in NW with diffuse interface are inhomogeneous in
core and shell.

As it seen from Figs. 3—5 the highest absolute values
of stress components are observed in NW subjected to ei-
genstrain with Heaviside theta profile, whereas the lowest
absolute values of stress components are detected in NW
subjected to eigenstrain with arctangent function profile
for given parameters of approximation.

4. CONCLUSIONS

In summary, the theoretical model describing the misfit
stress of core-shell NWs containing the diffuse IPhBs with
different range of distinctness has been proposed. We
treated a core-shell NW as an elastic cylinder subjected to
inhomogeneous eigenstrain determined by piecewise-lin-
ear, error and arctangent approximations. The nonzero com-
ponents of stress tensor have been obtained analytically for
aforementioned approximations. It has been shown that the
stress concentration phenomenon is strongly depended on
interface distinctness defined by eigenstrain profiles: the
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less the interface distinctiveness, the less stress magnitude
in NW. In case of eigenstrain functions with the same tan-
gent at t = ¢,, the lowest stress magnitudes correspond to the
NW with arctangent approximation of eigenstrain defor-
mation. Overall, it is worth noting that the piecewise linear
eigenstrain approximation seems to be more effective to de-
velop theoretical model of misfit stress relaxation in core-
shell NWs with diffuse interface due to the facts that the
misfit stress induced by the piecewise linear eigenstrain can
be expressed in terms of power polynomials and parameter
0 has a clear physical meaning of diffuse interface transient
region.
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APPENDIX A

Analytical expressions of the elastic stress tensor compo-
nents in radial NWs subjected to inhomogeneous
|

dilatational eigenstrain demonstrated in Fig. 2 are intro-
duced below.

The stress tensor components in core-shell NWs with
the Heaviside theta eigenstrain profile attributed to the
sharp interfaces are well-known (see, for example,
Ref. [11]):

2 -1, 0<t<t,

Gyzgoﬁ@—%} f, <t <1, (A12)
-1, 0<t<t,

Sy =0, t§(1+ 2)’ Wiz, (A.1b)

Gg)zzco{f—i, 0<r<1, (Alo)
tys t, <t<l,

where 6, =p fy(1+Vv)/(1-v).

The nonzero stress tensor components in core-shell
NWs with piecewise-linear eigenstrain profile are ob-
tained in this work as follows:
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The nonzero stress tensor components in core-shell
NWs with error function eigenstrain profile are obtained
in this work as follows:
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The nonzero stress tensor components in core-shell
NWs with arctangent function eigenstrain profile are ob-
tained in this work as follows:

o =2 fBD, Oﬁ[
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VJIK 539.3

HanpsiskeHust HECOOTBETCTBUSA B PAAMAJIbHBIX HAHONPOBOJIOKAX THIIA
«AAPO-000104Ka» ¢ TUPPY3HBIMH IPAHULIAMH Pa3aesia

A.C. Xpamos!, C.A. Kpacuuukuii', A.M. Cmupnos!

! IHCTUTYT NEPCHIEKTUBHBIX CHCTEM IIEpeaaun Jauubix Yuusepcutera U”TMO, Kponsepkekuii np., . 49, nut A,
Cankr-IlerepOypr, 197101, Poccust
2 JlaGopaTopus MEXaHWKH HaHOMATepHaIoB U Teopun aedexros UTIMam PAH, Boabwoii mip., 1. 61, Cankr-TlerepOypr,199178,
Poccus
3 JTaGopaTopusi MEXaHUKHU HOBBIX MaTepuanos, CIIGITY Ilerpa Benukoro, [Toaurexuuueckas yi., 1. 29, Cankr-IlerepOypr, 195251,
Poccus
4 Kadenpa BLIYUCIMTENBHBIX METON0B MeXxaHuku aedopmupyemoro tena CII6IY, Yuupepcuterckas Hao., 1. 7-9,
Cankr-IlerepOypr, 199034, Poccust

AHHoTauus. [IpensoxeHsl ynpyrue MOJeIN paJnalbHbIX HAHOIPOBOJIOK THIIA «SIP0-0001104Ka» ¢ Au(GdY3HBIMU MEK(pasHBIMU Tpa-
HUIAMH PA3JIMYHOI CTEINEHN Pa3MBITOCTH. PacnpesieneHne HanpsHKeHHH HECOOTBETCTBHS B MOI00HBIX HAHOIPOBOJIOKAX ONUCAHO Ha
OCHOBE KOHIIEMIMU COOCTBEHHON NehopMaIii, KOTOpasi ONpeaeIIsuiach C IIOMOIIBIO TapaMeTpa HECOOTBETCTBHS M alIIPOKCUMHUPOBa-
J1ach KyCOYHO-TMHEHHOM QyHKuMeH, QyHKImeil onmbky 1 apKTaHreHcoM. B paMkax yka3zaHHBIX allpOKCHMAIUA IPOBEICH M0Ipo0-
HBIH QHAJIU3 MO YNPYTUX HANPSHKEHUH B HAHOIPOBOJIOKAX THUIA «SPO-000JI04Kay, IIOTyYEHbI COOTBETCTBYIOLINE 3aBUCUMOCTH U
AHATNTUYECKHE BBIPAXKEHUS.

Kniouesvie cnosa: HaHOIIPOBOJIOKA THIIA «SAP0-0005104Ka»; Nuddy3HbIE TPAaHULBI; HANPSHKEHUST HECOOTBETCTBUS
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